6,739 research outputs found

    Accurate effective pair potentials for polymer solutions

    Full text link
    Dilute or semi-dilute solutions of non-intersecting self-avoiding walk (SAW) polymer chains are mapped onto a fluid of ``soft'' particles interacting via an effective pair potential between their centers of mass. This mapping is achieved by inverting the pair distribution function of the centers of mass of the original polymer chains, using integral equation techniques from the theory of simple fluids. The resulting effective pair potential is finite at all distances, has a range of the order of the radius of gyration, and turns out to be only moderately concentration-dependent. The dependence of the effective potential on polymer length is analyzed in an effort to extract the scaling limit. The effective potential is used to derive the osmotic equation of state, which is compared to simulation data for the full SAW segment model, and to the predictions of renormalization group calculations. A similar inversion procedure is used to derive an effective wall-polymer potential from the center of mass density profiles near the wall, obtained from simulations of the full polymer segment model. The resulting wall-polymer potential turns out to depend strongly on bulk polymer concentration when polymer-polymer correlations are taken into account, leading to a considerable enhancement of the effective repulsion with increasing concentration. The effective polymer-polymer and wall-polymer potentials are combined to calculate the depletion interaction induced by SAW polymers between two walls. The calculated depletion interaction agrees well with the ``exact'' results from much more computer-intensive direct simulation of the full polymer-segment model, and clearly illustrates the inadequacy -- in the semi-dilute regime -- of the standard Asakura-Oosawa approximation based on the assumption of non-interacting polymer coils.Comment: 18 pages, 24 figures, ReVTeX, submitted to J. Chem. Phy

    Streptavidin-hosted organocatalytic aldol addition

    Get PDF
    In this report, the streptavidin-biotin technology was applied to enable organocatalytic aldol addition. By attaching pyrrolidine to the valeric motif of biotin and introducing it to streptavidin (Sav), a protein-based organocatalytic system was created, and the aldol addition of acetone with p-nitrobenzaldehyde was tested. The conversion of substrate to product can be as high as 93%. Although the observed enantioselectivity was only moderate (33:67 er), further protein engineering efforts can be included to improve the selectivity. These results have proven the concept that Sav can be used to host stereoselective aldol addition

    Dispersion control for matter waves and gap solitons in optical superlattices

    Full text link
    We present a numerical study of dispersion manipulation and formation of matter-wave gap solitons in a Bose-Einstein condensate trapped in an optical superlattice. We demonstrate a method for controlled generation of matter-wave gap solitons in a stationary lattice by using an interference pattern of two condensate wavepackets, which mimics the structure of the gap soliton near the edge of a spectral band. The efficiency of this method is compared with that of gap soliton generation in a moving lattice recently demonstrated experimentally by Eiermann et al. [Phys. Rev. Lett. 92, 230401 (2004)]. We show that, by changing the relative depths of the superlattice wells, one can fine-tune the effective dispersion of the matter waves at the edges of the mini-gaps of the superlattice Bloch-wave spectrum and therefore effectively control both the peak density and the spatial width of the emerging gap solitons.Comment: 8 pages, 9 figures; modified references in Section 2; minor content changes in Sections 1 and 2 and Fig. 9 captio

    Rosenfeld functional for non-additive hard spheres

    Full text link
    The fundamental measure density functional theory for hard spheres is generalized to binary mixtures of arbitrary positive and moderate negative non-additivity between unlike components. In bulk the theory predicts fluid-fluid phase separation into phases with different chemical compositions. The location of the accompanying critical point agrees well with previous results from simulations over a broad range of non-additivities and both for symmetric and highly asymmetric size ratios. Results for partial pair correlation functions show good agreement with simulation data.Comment: 8 pages with 4 figure

    An integral equation approach to effective interactions between polymers in solution

    Full text link
    We use the thread model for linear chains of interacting monomers, and the ``polymer reference interaction site model'' (PRISM) formalism to determine the monomer-monomer pair correlation function hmm(r)h_{mm}(r) for dilute and semi-dilute polymer solutions, over a range of temperatures from very high (where the chains behave as self-avoiding walks) to below the θ\theta temperature, where phase separation sets in. An inversion procedure, based on the HNC integral equation, is used to extract the effective pair potential between ``average'' monomers on different chains. An accurate relation between hmm(r)h_{mm}(r), hcc(r)h_{cc}(r) [the pair correlation function between the polymer centers of mass (c.m.)], and the intramolecular form factors is then used to determine hcc(r)h_{cc}(r), and subsequently extract the effective c.m.-c.m. pair potential vcc(r)v_{cc}(r) by a similar inversion procedure. vcc(r)v_{cc}(r) depends on temperature and polymer concentration, and the predicted variations are in reasonable agreement with recent simulation data, except at very high temperatures, and below the θ\theta temperature.Comment: 13 pages, 13 figures, revtex ; revised versio

    Fracture driven by a Thermal Gradient

    Full text link
    Motivated by recent experiments by Yuse and Sano (Nature, 362, 329 (1993)), we propose a discrete model of linear springs for studying fracture in thin and elastically isotropic brittle films. The method enables us to draw a map of the stresses in the material. Cracks generated by the model, imposing a moving thermal gradient in the material, can branch or wiggle depending on the driving parameters. The results may be used to compare with other recent theoretical work, or to design future experiments.Comment: RevTeX file (9 pages) and 5 postscript figure

    Heat Transport in a Strongly Overdoped Cuprate: Fermi Liquid and Pure d-wave BCS Superconductor

    Full text link
    The transport of heat and charge in the overdoped cuprate superconductor Tl_2Ba_2CuO_(6+delta) was measured down to low temperature. In the normal state, obtained by applying a magnetic field greater than the upper critical field, the Wiedemann-Franz law is verified to hold perfectly. In the superconducting state, a large residual linear term is observed in the thermal conductivity, in quantitative agreement with BCS theory for a d-wave superconductor. This is compelling evidence that the electrons in overdoped cuprates form a Fermi liquid, with no indication of spin-charge separation.Comment: 4 pages, 2 figures, published version, title changed, Phys. Rev. Lett. 89, 147003 (2002

    Low-temperature phonon thermal conductivity of cuprate single crystals

    Full text link
    The effect of sample size and surface roughness on the phonon thermal conductivity κp\kappa_p of Nd2_2CuO4_4 single crystals was studied down to 50 mK. At 0.5 K, κp\kappa_p is proportional to A\sqrt{A}, where AA is the cross-sectional area of the sample. This demonstrates that κp\kappa_p is dominated by boundary scattering below 0.5 K or so. However, the expected T3T^3 dependence of κp\kappa_p is not observed down to 50 mK. Upon roughing the surfaces, the T3T^3 dependence is restored, showing that departures from T3T^3 are due to specular reflection of phonons off the mirror-like sample surfaces. We propose an empirical power law fit, to κp∼Tα\kappa_p \sim T^{\alpha} (where α<3\alpha < 3) in cuprate single crystals. Using this method, we show that recent thermal conductivity studies of Zn doping in YBa2_2Cu3_3Oy_y re-affirm the universal heat conductivity of d-wave quasiparticles at T→0T \to 0.Comment: 4 pages, 4 figure
    • …
    corecore